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analyses have utilized the experimental data of GW. 
In the present study, the four parameters in the Daw- 
son functions were determined from the present 
experimental data. The exponent a of the radial 
distribution functions in (4) was found to be 
2.10 (26)/~-2. This value is almost the same as that 
assumed by Dawson as shown in Table 2. However, 
the values of the parameters K22 and L22 which were 
obtained are slightly different from those of Dawson. 
One can calculate the deformation charge density 
using these parameters. The maximum deformation 
density at the midpoint between the nearest-neigh- 
bout atoms is 0.44 (17) e~k -3, which is smaller than 
Dawson's value of 0"635 e/~k -3 as shown in Fig. 4. 

In order to study the thermal vibration, the GW 
data have been recalculated for several charge density 
models (McConnell & Sanger, 1970; Stewart, 1973a; 
Price & Maslen, 1978). The B values obtained in the 
recalculations range from 0.14 to 0-22 A 2 depending 
on the models used. On the other hand, the neutron 
diffraction studies have concluded that the values lie 
between 0.14 and 0-17~  2. The present value of 
0.142 (9)A2 is in good agreement with the value 
calculated from the phonon dispersion curves 
measured by inelastic neutron scattering, 0.149- 
0.150 A 2 (Stewart, 1973b), and also with that from 
neutron diffraction of the powdered sample, 0.14- 
0.17 A 2 (Price, Maslen & Moore, 1978). 

Synthetic diamond crystals were used as the speci- 
mens and these contained grown-in dislocations to a 
certain extent as shown in Fig. 1. The Pendell6sung 
beats were measured only in the defect-free regions. 
However, it is ihevitable that there are some effects 

resulting from the strain field around the dislocations 
near the region used. Nevertheless, the effects are 
thought to be small, because the values of the struc- 
ture factors obtained differ only slightly from each 
other in the different regions. 

The authors are greatly indebted to Messrs S. Yazu 
and K. Tsuji of Sumitomo Electric Industries, Ltd, 
Japan for kindly supplying parallel-sided synthetic 
diamond wafers. They also acknowledge the partial 
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Abstract 

The procedure adopted by Heinerman [Acta Cryst. 
(1977). A33, 100-106] to incorporate structural infor- 
mation in phase determination is combined with that 
of Giacovazzo [Acta Cryst. (1983). A39, 685-692]. 
The resulting joint probability distribution of three 
structure factors is a generalization of the correspond- 
ing distributions of the previous authors. This distri- 
bution is used (i) to calculate the phase of a triple 
product given a priori structural information, (ii) to 

0108-7673/90/060517-04503.00 

resolve the sign ambiguity in single isomorphous 
replacement if the replacement structure is known. 
The latter application for the incorporation of partial 
structure information is more general than that pro- 
posed by Fan Hai-fu & Gu Yuan-xin [Acta Cryst. 
(1985). A41,280-284]. 

Introduction 

In the generalized Cochran formula proposed by 
Main (1976), four different types of a priori informa- 
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518 USE OF STRUCTURAL INFORMATION IN PHASE DETERMINATION 

tion can be used, viz (a) randomly positioned atoms, 
(b) randomly positioned and randomly oriented 
atomic groups, (c) randomly positioned but correctly 
oriented atomic groups, (d) correctly positioned 
atomic groups (partial structure information). A 
mathematical derivation of this formula was given by 
Heinerman (1977). Case (d) was reconsidered by 
Giacovazzo (1983) and new mathematical formulae 
were obtained by a proper use of a priori information. 
Heinerman's (1977) approach can exploit different 
types of a priori information, but the allowed size of 
the group of atoms with known position is limited 
whereas Giacovazzo's (1983) approach does not 
exploit different types of a priori information but has 
no limit on the size of the group of atoms with known 
position. 

Fan Hai-fu, Han Fu-son, Qian Jin-zi & Yao Jia-xing 
(1984) showed that the sign ambiguity that exists 
in single isomorphous replacement (SIR) can be 
resolved if the replacement structure is known. 
They based their treatment on the Cochran (1955) 
distribution. In an extension of their approach they 
incorporated partial structure information via Sim's 
distribution (Fan Hai-fu & Gu Yuan-xin, 1985). 
Subsequently, Hauptman's (1982) joint probability 
distribution for the SIR case was employed to obtain 
the sign probability if the replacement structure is 
known (Klop, Krabbendam & Kroon, 1987; Hao 
Quan & Fan Hai-fu, 1988). 

In the first part of the paper we will combine the 
approach of Heinerman (1977) with that of 
Giacovazzo (1983) and calculate the probability dis- 
tribution of a triplet-invariant phase given a priori 
information. In the second part the sign ambiguity in 
the SIR case will be resolved by exploiting a priori 
information using the results of the first part of the 
paper. 

Heinerman (1977) [HI will be used throughout this 
paper. The structure factor Fh is defined by 

P 

Fh = Z gj(h) exp(27rih.r j ) .  (1) 
j = l  

A subscript j labels an atom or group of atoms with 
scattering factor gj(h) and position vector rj. Le t j - -p  
denote the group of atoms with known orientation 
and position. The factor gp(h) is the known structure 
factor of this group and since the origin may be chosen 
anywhere in P1, we choose rp =0. The normalized 
structure factor Eh is defined by 

Eh F.I(I ~i2\112 (2) 
= "~ hi / p . r . v . ,  

where the average in the denominator is taken over 
the primitive random variables (p.r.v.) of which there 
are three types corresponding to the first three 
categories of structural information referred to above: 
(a) 1 <-j <- Pl atomic position vectors; 
(b) Pl + 1 -<j-< P2 the position vectors and orienta- 

tional parameters; 
(c) p 2 + l < _ j < _ p - l t h e  position vectors of the 

groups with known orientation 
(i.e excluding the position 
vector of the group with known 
orientation and known posi- 
tion). 

Note that (5)-(13) [HI still apply. 
We shall derive the joint probability distribution 

P ( R I ,  R2, R3, @1, @2, @3) of the magnitudes IEh,[, 
IEh21, IEh3l and the phases Ch,, ¢h2, ¢h3, where hi +h2+ 
!! 3 = 0, via its characteristic function Q(pl, p2, p3, 01, 
02, 03). The calculation of the characteristic function 
is given in Appendix I.* The result replaces (15) [HI 
and reads 

Theory 

In his derivation of the probability distribution of a 
triple product for space group P1 given different types 
of structural information, Heinerman (1977) treated 
the position vector of the group of correctly placed 
atoms as a primitive random variable, thereby treating 
this group in the same way as the group of correctly 
oriented but randomly positioned atoms. In the 
approach adopted by Giacovazzo (1983), the position 
vectors of the randomly positioned atoms were 
regarded as the primitive random variables and the 
position vector of the group of correctly positioned 
atoms was not. 

In the following we will start from Heinerman's 
(1977) approach and combine it with that of 
Giacovazzo (1983) by excluding the position vector 
of the group of correctly placed atoms from the set 
of primitive random variables. The notation of 

Q(pl ,  p2, p3, 01, 02, 03) 

-zlQ123plp2p3 COS (01 + 02+ 0 3 -  q123) --"  e x p  1 .  , 

2 2 + Y [ u~.io, c o s  ( ~ .  - o~) -¼(1 - u , ~ ) p . ]  . 
n = l  

(3) 

where up, = up(h,), tip, = tip(h,) and Q~23 exp q~23 is 
given by (16) [HI with p in the third term replaced 
by p - 1. The Fourier transformation in Appendix IV 
[HI is replaced by Fourier transformation of (3). The 

* Appendices I and II have been deposited with the British 
Library Document Supply Centre as Supplementary Publication 
No. SUP 52660 (7 pp.). Copies may be obtained through The 
Technical Editor, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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result replaces (21) [H]  and reads 

P ( R I ,  R2, R3, ~Pl, ~02, ~03) 

=(R~ R2R3/rr3)[ (1 - u21)(1 - U2p2)(1 - u23)]-1 

xexp  - ( 1 - u ~ )  -1 
1 

~ -2R~up~ cos (~o~-tp~)] x [ R ~ + u p , ,  

+ 2Q~23/[(1 - u~l)(1 - u22)(1 - u23)] 

x [R~ R2R3 cos (~Pl + ~t)2 + ~ 3 -  qr123) 

-- uplR2R3 cos (tpl + q92+ ~°3 - qt123) 

- RlUpER3 cos (~01 -1- tp2 "-[- (~03 - q~23) 

- R1REUp3 cos (~01 + ~o2+ tp3 - q'123) 

q- uplup2R 3 cos (tpl W tp2-F ~ 3 -  q~23) 

-t- Upl R2up3 cos ( tp l  q- ~2 -1- tp3 - q~123) 

-[- RlUp2Up3 COS (~01 "-[- tp2 "~ tp3-q~23)  

--UplUp2Up3COS(tpl+tp2+tp3--q~23)]}. (4/ 

Now, consider the following special cases. 
(i) If there is little partial structure information 

then Up,, = 0  (n = 1, 3) and (4) reduces to (21) [H].  
The latter equation is valid only for small Up, i.e. for 
small partial structures, as was observed by 
Heinerman [H] ,  whereas (4) is valid for all up ~ 1. 

(ii) For the limiting case that the whole structure 
is known Q123' = 0 and up,, = 1 (n = 1, 3). Introduction 
of this into (3) followed by Fourier transformation 
gives a delta function centred on R~ -- 1 and ~o,, = tip,, 
( n =  1, 3). 

(iii) If there is no other structural information than 
partial structure information (apart from the informa- 
tion provided by the atomic hypothesis, the basic 
source of structural information in direct methods) 
then Q123 ¢, q~23 0, (1 ' = = - Up,,) = bn, up,, = Rp,, (n = 1, 
3) with c, b, and Rp,, defined by Giacovazzo (1983). 
The distribution defined in (19) of Giacovazzo (1983) 
employs partia.1 structure information [i.e. type (d)] 
as the only source of structural information and turns 
out to be a special case of (4), after correcting the 
(probably clerical) error ( -  becomes +) in the last 
line of (19). 

Appendix II (deposited) contains the calculation 
of the conditional distribution P ( ~ I R ~ ,  RE, R3) of 
the phase • = ~o~ + ~o2+ ~03 given the magnitudes IEh,], 
I E~I and I Eh3] which is obtained from (4). If only 
terms up to third order in the Up~ are retained in (II.10) 
the result is the von Mises distribution 

P(q~ [ R~, R2, R3) 

= ( 1 / L )  exp {2Q~E3R,RER3 cos ( ~ -  q~23) 

+ 2up~UpEUp3RiR2R3 cos (~-q~p)}  

= ( 1 / L ) e x p { E Q ~ 2 3 R ~ g E g a c o s ( ~ - q ~ 2 3 ) } ,  (5) 

where ~ p =  tp l  + tp2 + tp3,  L =  2zrlo(2Q,23R,RER3) 
and Q123 and q123 as defined by Heinerman, hence 
(5) is identical to (22) [HI .  Heinerman's derivation 
is based on a simpler joint probability distribution, 
valid only for small Ups, from which his conditional 
distribution can be obtained without further approxi- 
mations. Although our derivation is based on the joint 
probability distribution (4) which holds for any Up # 
1, approximations are necessary in the derivation of 
the conditional distribution so that the conditional 
distribution (5) in our derivation is still only valid 
for small Upi. The conditional distribution (II.8) 
derived in the Appendix, however, is more general 
than (5) since it holds for any Up1 ~ 1, Up2 ~;~ 1 and 
small Up3. 

Resolution of the sign ambiguity in single isomorphous 
replacement 

Let the structure factors of the native, derivative and 
replacement structure in single isomorphous replace- 
ment (SIR) be denoted by Fi, Gi and FI and the 
phases of F~ and F~ by ~o~ and ~o~. With SIR data the 
following sign ambiguity remains if the replacement 
structure is known: 

~, = ~ ± I A ~ , I ,  (6) 

where A~o~ is defined as A~o~- ~oi- ~o~ and its magni- 
tude is calculated from 

( - I  F,I 2 + IG,  I 2 - I f ' , l  z) 
cos I~ ,1  = 21F, I IF',l (7) 

Fan Hai-fu et al. (1984) proposed to resolve the sign 
ambiguity by calculating the probability that the sign 
of A~.is  positive via the Cochran distribution. 

Fan Hai-fu et al. (1985) used the product of the 
Cochran distribution and Sim's (1959) distribution 
to incorporate partial structure information in the 
sign probability. In their procedure, correlations 
between the structure factors of a triple product are 
lost since Sim's distribution involves a single structure 
factor instead of three triple-related structure factors. 
We will solve this problem by calculating the sign 
probability via our distribution (4). Klop et al. (1987) 
suggested incorporation of partial structure informa- 
tion into the sign probability via Hauptman's  (1982) 
joint probability distribution for the SIR case. The 
procedure adopted in the present paper, however, is 
to be preferred since other types of prior information 
can be exploited and the resolution dependence of 
the distribution parameters is now taken into account 
(e.g. Q~23 depends on hi, h2 and h3). 

Let part of the native structure, with normalized 
structure-factor magnitude up~ and phase tpi, be 
known. From the definitions Ag,~ _= ~oi- ~o~ and 8i -= 
tpi--~O~ we have ~oi=tp~-8i+A~o~. The phases tp~ 
and 8~ are known and so is the magnitude IA~o~l. 
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Hence, the value of p~ in (4) is ~ p ~ - ~ , + l A p ,  I or 
~,-~,-IA~,I. 

After substitution of ~0~ in (4) by/3p~- 6i + Api the 
joint probability distribution p(Ap~, ZIP2, ZIP3, R~, 
R2, R3) can be obtained. This distribution can be 
used to derive the distribution P(ziptl R~, R2, R3, 
Izip=l, ]zip3l) or the distribution p(Ap~[ Rt,  R2, R3, 
ZIP2, zip3). With the definition 4,'-= p'~ + p~+ p~, the 
latter distribution reads 

P(ZIPx[ R1, R2, R3, Aq~2, Ap3) 
2 - e x p  {[2 R~ ups~ (1 - up1) ] cos (Ap~ - B,) 

+ 2Q~23/[(1 - u20(1 - u22)(1 - u23)] 

x [ R~ R z R  3 cos (Apl  -~- zi~2 "~- Ap3 -~- 4, '  -- q'123) 

- R1 up2R3 cos (Apl  + ~2 + ZIP3 + 4,'  -- q'123) 

-- R1R2uv3 COS (A~pl + A p 2 - { -  (~32t - 4,'-- qt123) 

+RlUp21dp3COS(Apl+C~2+r~3+4, '--qr123)]} (8) 

and is useful if the signs of the phase differences zip2 
and Ap3 have already been determined. This distribu- 
tion replaces the product of the Cochran distribution 
and Sim's distribution used by Fan Hai-fu & Gu 
Yuan-xin (1985). The sign probability of zi~l that is 

obtained from (8) is denoted as ~±(A~ot) and reads 

~±(A~p~) = ½ ± ½ tanh (sin([Ap~[) 

x {[2R~upl/(1 - u~,)] sin 61 

- 2 Q~23/[(1 - U~l)(a - u22)(1 - u~,3) ] 

X [ R I R z R  3 sin ( A p 2 +  Ap3 q- 4 , ' - -  q'123) 

- Rlup2R3 sin (32+ Ap3+ 4 , ' -  q~23) 

- R~R2up3 sin (Ap2+ (~3"+ 4, ' - -  qt,23) 

+ g~uv2UpaSin(32+63+4, ' -q~23)]}) .  (9) 

Identify hi, h E and h 3 with -h ,  k and h - k ,  respec- 
tively, and allow only partial structure information 
(i.e. q~123 = 0), to compare (9) with the sign probability 
p±(Aq~.) (15) derived by Fan Hai-Fu & Gu Yuan-xin 
(1985). The last three sine terms in (9) of the present 
paper are missing in (15). Since 6~ = --rh, ~_(Aph) = 
~+(ZIP-,) and ~+(ziP,)= ~-(zi~-h), the remaining 
terms of ~±(A~,) have the same sign as p±(Aph) of 

Fan Hai-fu & Gu Yuan-xin (1985), but the coefficients 
differ. The latter formula is an approximation of (9) 
valid for small partial structures only, since the extra 
sine terms in (9) will in general not be negligible if 
partial structure information is available. 

Concluding remarks 

The use of structural information in phase determina- 
tion was shown by several authors to lead to better 
results. In a preliminary test (Main, 1976), the use of 
molecular structure was reported to lead to smaller 
root-mean-square errors in the estimated phases of 
triplet invariants. Camalli, Giacovazzo & Spagna 
(1985) demonstrated that several M U L T A N - r e s i s t a n t  
structures can be solved easily by the use of partial 
structure information. Fan Hai-fu & Gu Yuan-Xin 
(1985) demonstrated that the sign ambiguity in single 
isomorphous replacement can be solved more easily 
if partial structure information is used. 

We feel that a single theory which takes account 
of different types of structural information increases 
understanding and facilitates future applications. 
Therefore in the present paper the theoretical 
approaches of Main (1976), Heinerman (1977) and 
Giacovazzo (1983) are combined. We employed the 
resulting joint probability distribution to resolve the 
sign ambiguity in single isomorphous replacement; 
these results turn out to be valid regardless of the size 
of the partial structure. 
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